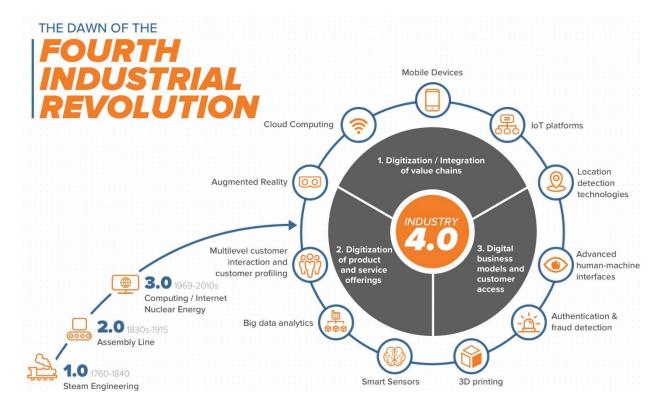

www.deanza.edu

Skills for a future strong workforce & Dual Enrollment

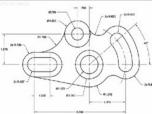

DMT - Skills for the future

- Critical skills for Mechanical Engineers and Industrial Designers and many other jobs.
 - CAD Parametric Mechanical Design tools
 - 3D Printing / Additive Manufacturing "AM"
 - Traditional Manufacturing, CNC & CAM

Charting your own pathway to professional success in the 4th Industrial Revolution

• <u>DMT 55</u>

Course Description – Fall 2025


This survey course is designed to introduce students to both design, manufacturing and modern fabrication, by means of demonstrations, with the following areas of emphasis: 3D Engineering CAD systems, (3D Printing), manufacturing processes, equipment and systems, design for manufacturing, measurement tools. blueprint reading, rapid prototyping CNC machine set-up, CNC machine programming (lathe and mill) and CAM. This hands on, team based course is designed to provide students with instruction & skills through applied real world experience to enable insight as to how products are designed and fabricated.

• <u>DMT 55</u>

- 4 weeks of rudimentary parametric solid modeling "CAD", projects and best practices of engineering software.
- 4 weeks of hands on Mill, Lathe, how to read a drawing and basic measurement tools usage
- 4 weeks of 3D Printing, current industry technology, fixing & editing STL files, slicing software and basic Design for Additive Manufacturing "DfAM"

• <u>DMT 53</u>

Course Description – Winter 2026

The objective of this course is to present a comprehensive overview of 3D Printing, spanning from fundamentals to applications and technology trends. Participants will learn the fundamentals of (AM) Additive Manufacturing/3D Printing of polymers, metals, composites, and biomaterials, and will realize how process capabilities (rate, cost, quality) are determined by the material characteristics, process parameters, and machine designs.

High School <u>Dual Enrolment</u> class

• <u>DMT 53</u>

Course Review – Winter 2026

Recent high school student comment

"I also just wanted to thank you for being a great professor during the quarter. You and Max both did a wonderful job at instructing a fun *and* efficient course to get people familiar with additive manufacturing and I am very grateful to have been a part of it. I have learned a lot through DMT 53 (and also DMT 55), and will definitely retain this knowledge not only through the parts we've printed and created but also through the entire industry to which I have been newly exposed to.

Thank you for being you, it was an awesome quarter."

DMT Dept' offers professional Engineering pathway skills

• <u>CAD</u>

CAD designers use specialized computer software to generate drawings, blueprints, plans, and other design documents for use across a wide variety of fields (mechanical design, architecture, construction, engineering, etc.

Design Your Future in CAD www.deanza.edu/dmt/

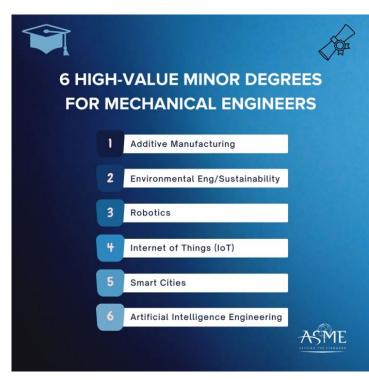
3D Printing "AM" Additive Manufacturing is rewriting the rules for how we design, build, and create in every major industry. From consumer product and industrial design, automotive, medical to Aerospace industries, the landscape is changing fast and we are here to train the future workforce.

Local companies that use CAD to design products

Think different

SPECIALIZED.

Google



10 De Anza College: Design & Manufacturing Technologies Dep't – CTE - Skills for the future

SPACi

TESLA

Nearly every industries uses CAD & Many use 3D Printing

The Aerospace industry

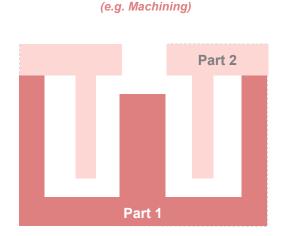
All of the major aerospace companies embrace Additive Manufacturing

Avio Aero

Rolls-Royce

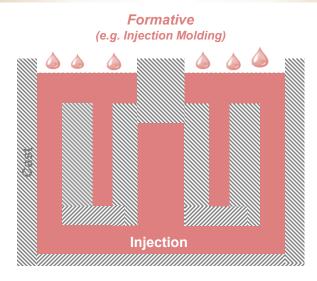
DeAnza

College

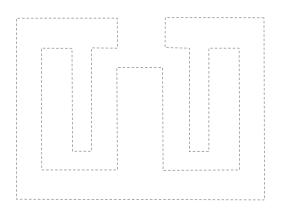

https://youtu.be/7le2EoJ8b8Q https://jobs.gecareers.com/global/en/ge-additive-careers

https://youtu.be/A2d96-bCpvo

https://www8.hp.com/us/en/printers/3d-printers.html


DESIGN & MANUFACTURING

Why and When to use AM: Where does it fit in?


Subtractive

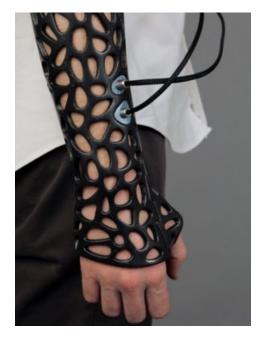
- Complexity limited by tooling and assembly steps
- High initial investment for tooling
- Material waste
- Strong, precise parts

- Molding design & fabrication required = Even higher initial investment
- Cast removal (post-processing)
- Injection uniformity concerns
- ✤ Near shape parts

Additive (e.g. 3D Printing)

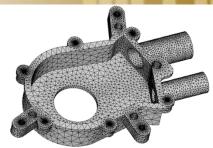
- ✤ Quasi-single step process
- Minimum material waste
- Near to final shape parts
- Post-processing

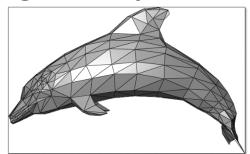
Additive Manufacturing alone is NOT the solution. The key is to find how to use its strength, combined with other manufacturing techniques to get best/better parts


De Anza College training technology for your success

Equipment Investment

- HP Multi Jet Fusion 3D Printer
- Stratasys <u>F370</u> & Fortus 250
- Creaform <u>3D Laser Scanner</u>
- 3D Systems <u>Figure 4</u> DLP
- Stratasys Objet30 Pro PolyJet
- <u>Markforged</u> Carbon fiber 3D Printer


You can make almost any form with 3D Printing - Volume or mass is expensive but complexity is free

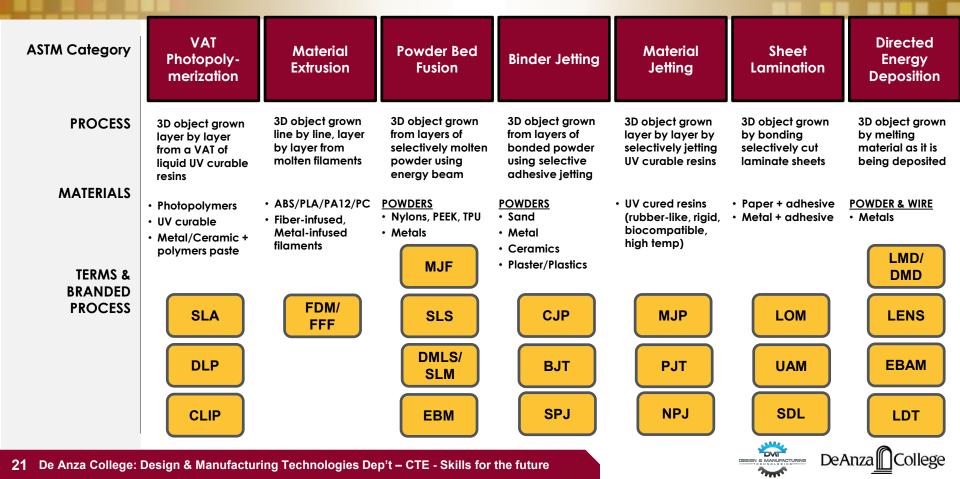


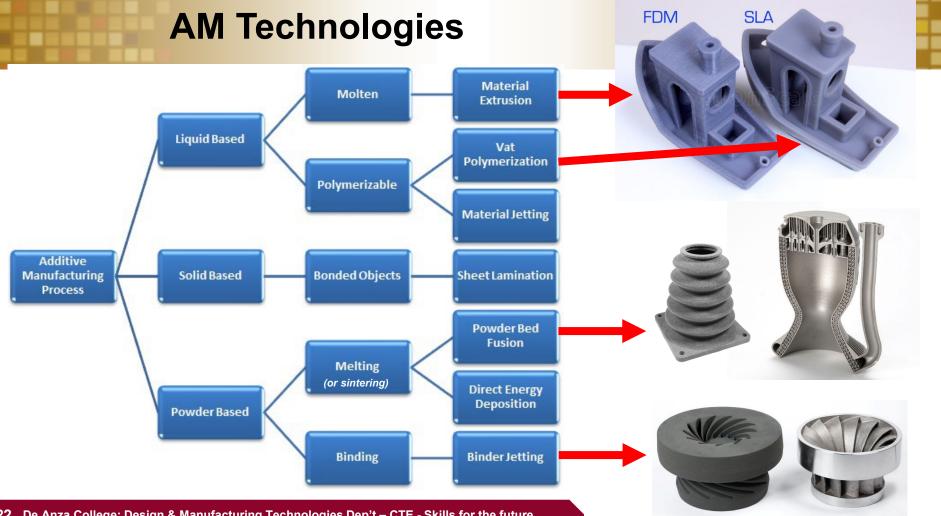
Universal aspects of all 3D printing

- Prats are built Layer by Layer
 - 3D Geometry is converted to 2D slices, then recompiled during printing
- CAD to Print File
 - Software translates between your CAD geometry &
 3D Printing process (slicing software)
 - STL "stereolithography" file

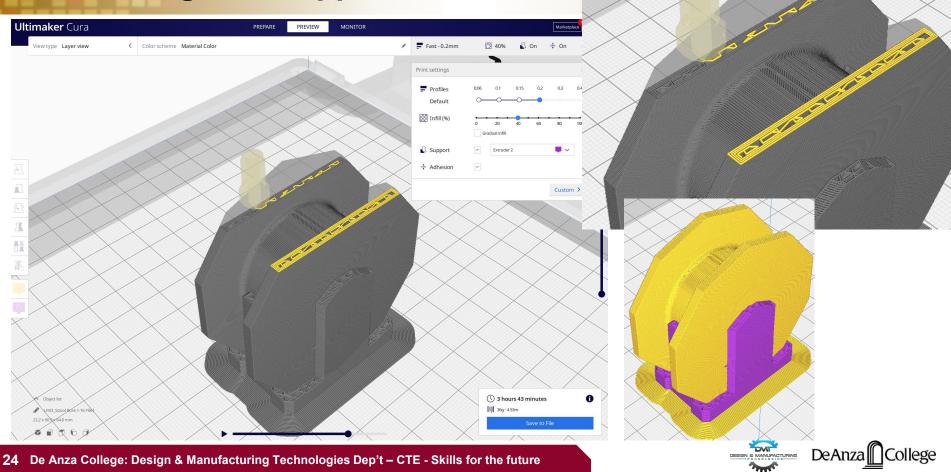
Basics of 3D Printing Technology

- CAD to Print File, Typically STL or 3MF
- Printing Process Mechanism (Pros & Cons)
 - FDM/FFF
 - SLS, MJF & DLMS
 - SLA & DLP
 - MJP Material Jetting
- Post Processing
- Maintenance and Scalability


MATERIAL				MATERIAL
EXTRUSION	PHOTOPOLYMERIZATION	Powder Bed Fusion (PBF)	JETTING	JETTING
Alternative Names: FFF - Fused Filament Fabrication FDM [™] - Fused Deposition Modeling	Alternative Names: SLA [™] - Stereolithography Apparatus DLP [™] - Digital Light Processing 3SP [™] - Scan, Spin, and Selectively Photocure CLIP [™] - Continuous Liquid Interface Production	Alternative Names: SLS ™ - Selective Laser Sintering; DMLS ™ - Direct Metal Laser Sintering; SLM ™ - Selective Laser Melting: EBM ™ - Electron Beam Melting; SHS ™ - Selective Heat Sintering; MJF ™ - Multi-Jet Fusion	Alternative Names: 3DP™- 3D Printing ExOne Voxeljet	Alternative Names: Polyjet™ SCP™ - Smooth Curvatures Printing MJM - Multi-Jet Modeling Projet™
Description: Material is extruded through a nozzle or orifice in tracks or beads, which are then combined into multi-layer models. Common varieties include heated thermoplastic extrusion (similar to a hot glue gun) and syringe dispensing.	Description: A vat of liquid photopolymer resin is cured through selective exposure to light (via a laser or projector) which then initiates polymerization and converts the exposed areas to a solid part.	Description: Powdered materials is selectively consolidated by melting it together using a heat source such as a laser or electron beam. The powder surrounding the consolidated part acts assupport material for overhanging features.	Description: Liquid bonding agents are selectively applied onto thin layers of powdered material to build up parts layer by layer. The binders include organic and inorganic materials. Metal or ceramic powdered parts are typically fired in a furnace after they are printed.	Description: Droplets of material are deposited layer by layer to make parts. Common varieties include jetting a photcurable resin and curing it with UV light, as well as jetting thermally molten materials that then solidify in ambient temperatures.
Strengths: Inexpensive and economical Allows for multiple colors Can be used in an office environment Parts have good structural properties	Strengths: High level of accuracy and complexity Smooth surface finish Accommodates large build areas	Strengths: • High level of complexity • Powder acts as support material • Wide range of materials	Strengths: Allows for full color printing High productivity Uses a wide range of materials	 Strengths: High level of accuracy Allows for full color parts Enables multiple materials in a single part
Typical Materials Thermoplastic Filaments and Pellets (FFF); Liquids, and Slurries (Syringe Types)	Typical Materials UV-Curable Photopolymer Resins	Typical Materials Plastics, Metal and Ceramic Powders, and Sand	Typical Materials Powdered Plastic, Metal, Ceramics, Glass, and Sand.	Typical Materials Photopolymers, Polymers, Waxes

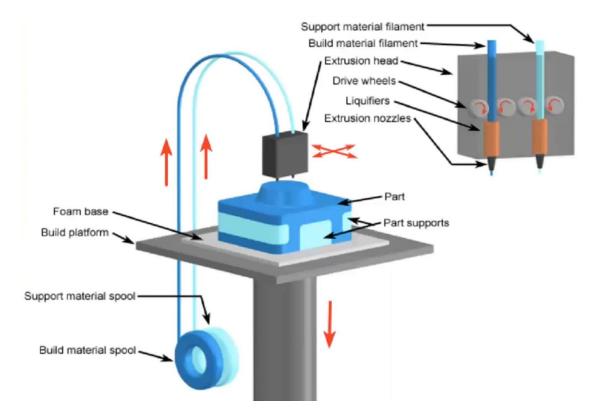

AM Technology Selection

FORM



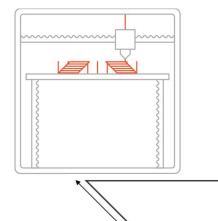
Overview of 3D Printing/Additive Manufacturing processes

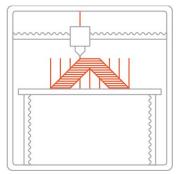
FDM slicing with support structure

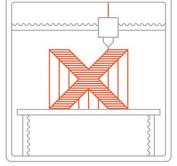

Considerations when picking print technology

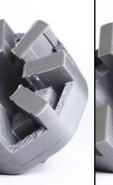
Print Process Mechanism

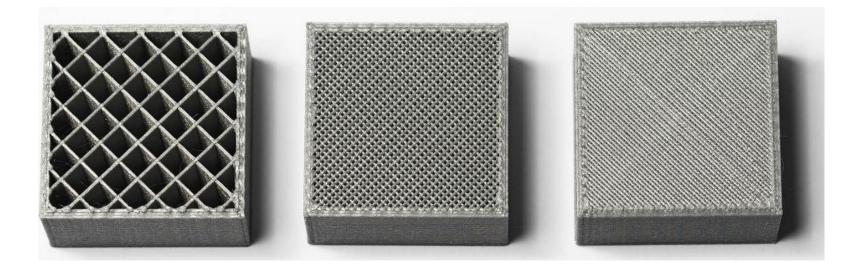
- How it Works
- Advantages
- Design considerations
- FDM / FFF
 - Fused Deposition Modeling / Fused Filament Fabrication



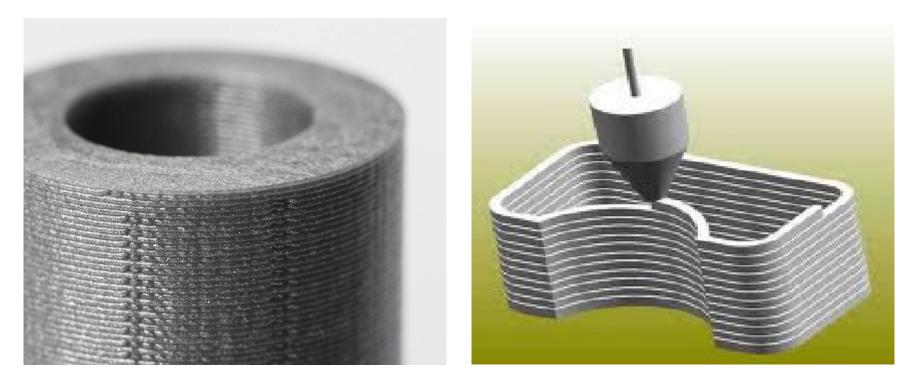

Fused Deposition Modeling / Fused Filament Fabrication FDM / FFF



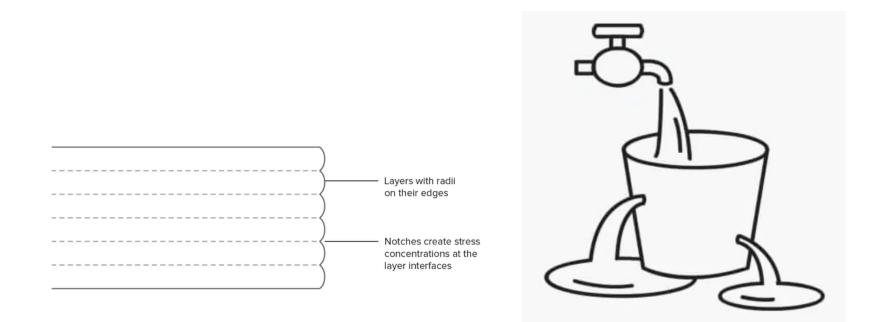

FDM Print Often Requires Support Structures



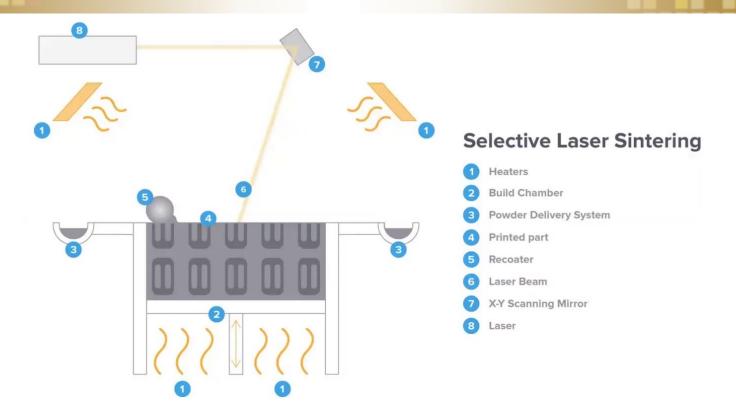
FDM is not solid like other processes "Infill & Shell Thickness"



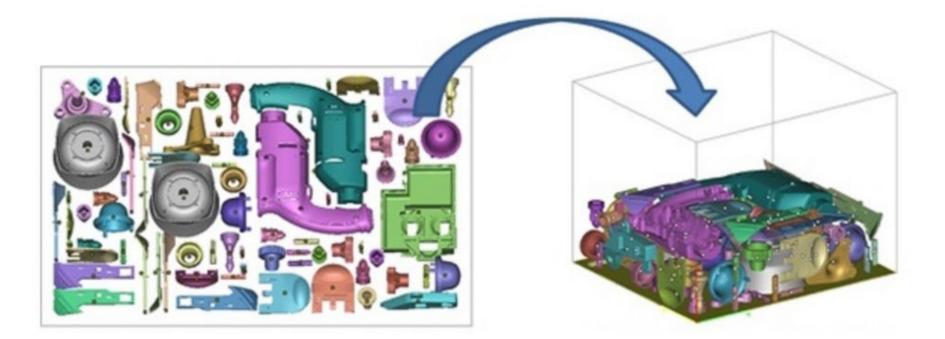
FDM parts are usually not printed solid to reduce the print time and save material. Instead, the outer perimeter is traced using several passes, called the shell, and the interior is filled with an internal, low-density structure, called the infill.


Design considerations for FDM: More significant layer lines compared to SLS, SLA, DLP

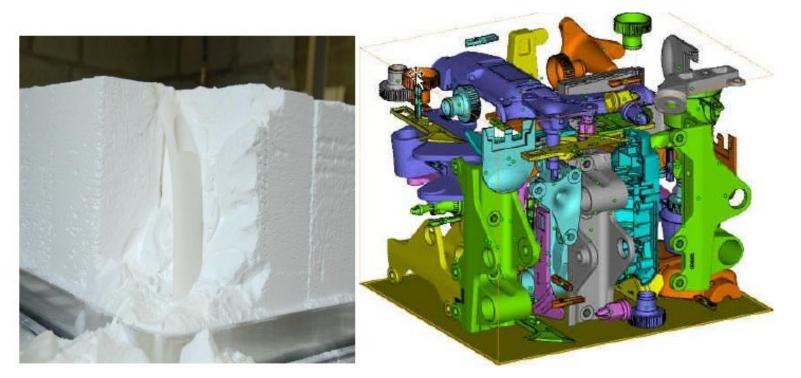
It may be difficult to produce parts with fine features, textures or very thin walls


FDM Parts are generally not watertight or airtight

This issue can be mitigated with post processing but will add time and labor to part


SLS: Selective Laser Sintering

SLS has becoming more popular and does not require support structures


SLS: All part geometry's are functionally self-supporting

Unfused power supports parts during printing. Parts can also be nested on top of each other

3D Nesting in SLS powder bed fusion "cake"

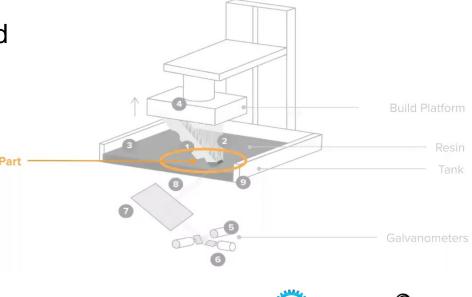
The unused Nylon power can be recycled for future prints

SLS: Nylon is ideal for a range of functional applications, from engineering consumer products to healthcare.

SLS 3D Printing Materials

The most common material for selective laser sintering is nylon, a popular engineering thermoplastic beloved for its lightweight, strong, and flexible properties. Nylon is stable against impact, chemicals, heat, UV light, water, and dirt, making it ideal for both rapid prototyping and production.

SLA & DLP


- Photopolymers
- DLP is much faster, uses LED projection
- SLA finer resolution uses laser
- Watertight
- Post cure time

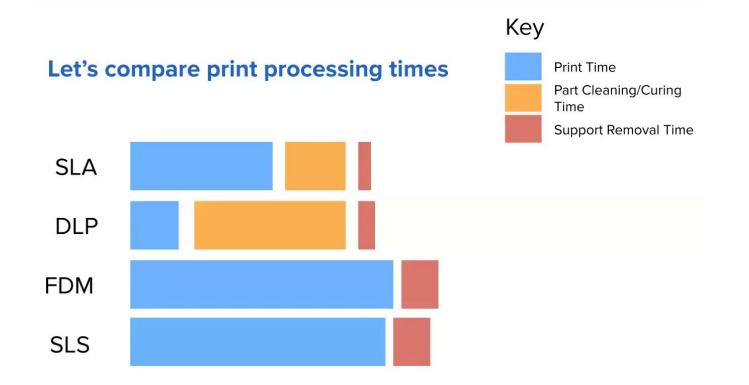
- Very fine resolution 25 micron layers
- Liquid Thermoset polymers
- watertight parts
- Supports are needed to keep build on plate
- All layers must have some connections, no island or feathery features without support


STEREOLITHOGRAPHY PROCESS

DeAnza

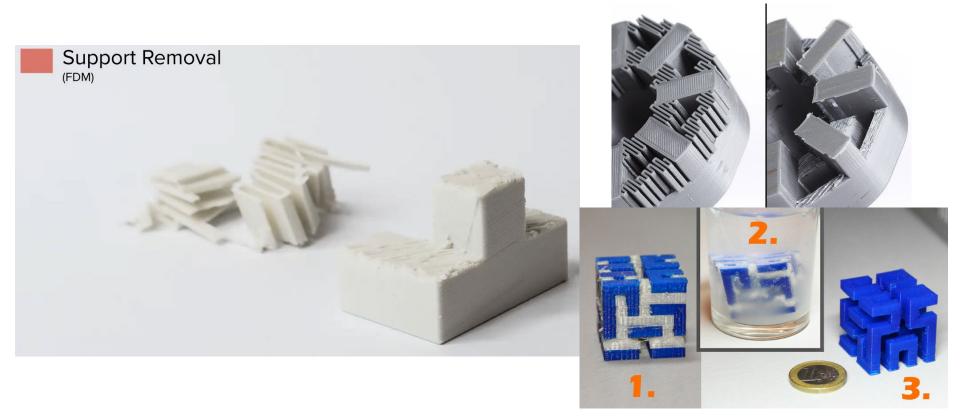
SLA – super fine resolution

Can produce highly detailed & translucent parts



Print Speed comparison

FDM	SLA	SLS
150 - 340 minutes	75 - 350 minutes	120-200 minutes
420 - 1275 minutes	150 - 660 minutes	660 minutes
21 parts 690 - 1710 minutes 33 - 81 minutes per part	12 parts 90-420 minutes 7,5-35 minute per part	300 parts 2400 minutes (40 hours) 8 minutes per part



Post Processing considerations

Support removal – FDM – dissolvable or break away

Support removal – SLA – break away

Support removal – SLS powder

Great skills and technical training for a strong future!



3D Printing; Mass is expensive and complexity is free

This and more at De Anza College in the DMT Dep't


www.DeAnza.edu/DMT

Build your skills and career opportunities with us now and for the future

www.deanza.edu/dmt/

Copyright © 2020 De Anza College

www.deanza.edu